Effective Web Test Automation
Selenium WebDriver with JUnit

Courtney Zhan

—

Effective Web Test Automation
with Selenium WebDriver and JUnit

Courtney Zhan

Contents

Foreword i
Preface. iv
Why thisbook? iv
What’s unique about this book series? \
Who should read thisbook? vi
How toread thisbook? vii
Sendmefeedback vii
1:Introduction 1
11: Goal . .. 1
12: AStOry o .o 2
1.3: E2E Test Automation and Continuous Testing: Universal Skills for
RapidResults e 2
14: Book Structure 3
2: Set up Selenium WebDriver 5
21 Installation 5
2.2: Run a sample automation script L L. 9
2.3: Run a sample automated testscript L. 10
3: Run your first Selenium WebDriver Test 13
3.1: Selenium JUnit Test Structure 13
3.2:First Test: UserLogin 15
3.3: Rename the test script file and add the firststep 15

3.4: Add more user login steps and finish the login test case complete . . . 17

CONTENTS

35:Runyourtest 21
3.6: Add Verification 23
3.7: Add a user login failed test case in a separate test script 24
3.8: Refactoring: Merge two user login test cases into one test script file . 25
3.9:Runthetestscript 27
4: Project Structure & Tools 29
4.1: Test Project Structure e 29
4.2: Settingup Intellil IDEA L. 29
4.3: Run Entire Test Scriptin IntelliJIDEA 29
4.4: Run Individual Test Case in IntelliJ IDEA 30
4.5: Benefitsof usinganIDE L. 30
5: Gain Productivity 31
5.1: Tools in the selenium suite 31
5.2: Some beginner-friendly features in Intellij IDEA 31
6: Design with Maintenanceinmind 34
6.1: Create anew testscriptinIntelliJ. 34
6.2: Extract to Function Refactoring: Login 34
6.3: Functional test refactoring rhythm 34
6.4: Move login function to TestHelper 34
6.5: Use the TestHelper’s login in other testscripts. 34
6.6: Introduce AbstractTest 35
6.7 WIap up . . o o o 35
T-MoreTests 36
71: 3.4 “Remember Me”signin 36
7.2: 4.5 A business user cannot access other businesses’ resources 36
7.3: 4.6 Business user shall not be able to view or edit user details 37
74: 57 5.8 Createclient 37
7.5:5.9,510 Searchclient 38
7.6: 6.11 Create a group lessononcalendar. 39

7.7: 6.12 Create recurring group lessonsoncalendar. 39

CONTENTS

7.8: Run the whole suite withAnt 40
8: Refactoring to Page Object Model 41
8.1: Page Object Model 41
8.2: Maintainable Test Design: Test Helperand POM 41
8.3: Refactoring POM with Tool Support 41
8.4: Case Study: Extract to Page Function 41
8.5: Case Study: Introduce Page Object 41
8.6: CaseStudy: Rename 42
B7:SUMMATY . . . o o e 42
9: More Tests Again 43
9.1: 8.13 Register user books a grouplesson 43
9.2: 8.14 Client can cancel class booking under ‘my bookings’ 43
9.3: 9.15 A registered user can make an one-on-one booking 44
9.4: 9.16 A registered user can cancel arecentbooking 44
9.5:10.17 Wizard to setupanew business 44
9.6: 11.18 Business user set business hours for individual physical resource 45
9.7: 12.19 Business can enable and disable client management. 45
9.8: 13.20 Scan QR to register/cancel group lesson (last 4 phone digits) . . 46
9.9: 1421 Responsive UL 46
9.10: 15.22 API Testing: Referral Get Payment Records 46
QILWrapupo 47
10: Set up Continuous Execution 48
10.1: Selenium Official Continuous Execution Options 48
10.2: Install BuildWise Server 48
10.3: GitRepository Setup e 48
10.4: Test Execution EnvironmentSetup 49
10.5: Set up a BuildWise Project L. 49
10.6: Test Execution in BuildWise 49
11: Sequential Execution in BuildWise 51

11.1: First TRree runs o o o o o e e e e e e e e 51

CONTENTS

2: Fixthebuild. 51
11.3: Getting the first greenrun 51
11.4: CT Role in help stabilizing and debugging test failures 52
11.5: Test execution history 52
11.6: Custom testexectuion 52
11.7: Quick navigation to the failed testline 53
11.8: Viewscreenshot 53
11.9: Toggle headlessmode 54
11.10: Custom targetserver URL 54
11.11: Two BuildWise Features Unavailable to Test ScriptsinJava 55
TMI22Wrapup . . . o oo 55
12: Parallel Execution in BuildWise 56
12.1: Run BuildWise in productionmode 56
12.2: Build Agent Machines 56
12.3: How parallel build works in BuildWise? 57
12.4: Create a Parallel Build Project 57
12.5: FirstParallel Run 58
12.6: Multi-Agents against the Single Server 58
12.7: Remove test execution dependencies among test scripts 58
12.8: Multi-Agents against the Multi-Servers 59
12.9: Some great BuildWise CT features for parallel test execution. 59
1210: Wrap up o o o 60
13: Effective Web Test Automation 61
13.1: Implied meanings of “Effective”. 61
13.2: Many End-to-End Test Automation efforts fail eue to ineffectiveness 62
13.3: How this book’s approach addresses the challenges 63
Afterword 68
Practice makesperfect 68
Apply your newly learned E2E Test Automation and CT atwork 68

Learnand Grow L 69

BOOKS 70
TOOIS .« 71
Blog . . . 71

Foreword

In 2025, I celebrate 20 years in the field of End-to-End (E2E) Test Automation and
Continuous Testing.

Over the past two decades, I have witnessed numerous failures in E2E automation
efforts. Arecurring issue I have observed is that many principal software engineers
and architects have only a superficial understanding of E2E test automation,
often missing the bigger picture: running the test suite for real. For example,
in one meeting, I heard a manager ask the Agile Transformation Team Lead,
“When can you show us the execution of E2E tests in the CI server? It’s been nine
months!” Ironically, the Agile transformation team, consisting of several Agile
coaches and DevOps engineers, had been responsible for selecting both the E2E
test automation tool and the CI server.

Senior software testing engineers are frequently misled by overhyped commercial
tools, drawn to flashy features that look impressive at first but deliver little
practical value. Common examples include:

Record-and-Playback functionality

GUI Utilities for object identification (then drag-n-drop)

Test replay

Headless browser testing

Framework’s Built-in auto-retry mechanisms

Sharding and parallelization gimmicks in the framework

Foreword ii

Over the past three decades, waves of test automation hype, such as HP QuickTest
Pro (commerical) and Protractor]S (free & open-source), have come and gone. Yet,
in most so-called ‘Agile’ projects, manual end-to-end testing remains the norm,
just as it was 30 years ago.

I have had the opportunity to rescue several failed E2E test automation efforts.
In most cases, within just a day or two, I was able to get a dozen reliable, real-
world automated tests running on a continuous testing server. People were often
amazed: not just by the visible (and objective) results, but by the clear, logical, and
practical approach that made sense.

In my opinion, here are the core principles for effective End-to-End Test Automa-
tion:

* Focus on high-quality, well-structured test scripts rather than over-relying
on tools.
* Design E2E test scripts with maintainability as a top priority.

e Write automated tests in a clear, readable format that all team members,
including non-technical business analysts, can understand (and willing to
run).

» Ensure each test script is reliable, stable, and resilient to changes.
 Develop tests with high efficiency, which is required for E2E test automation.

 Execute the complete test suite frequently, as regression testing, on a dedi-
cated Continuous Testing server.

» Make test execution and results highly visible, enabling rapid feedback and
shared accountability across the team.

When my daughter Courtney decided to pursue a career in software development,
I began teaching her my approach and best practices from the very start of her
university journey. Early on, she contributed to several of my applications by taking
on E2E test automation and Continuous Testing tasks. This hands-on experience

Foreword iii

not only helped her excel academically but also played a key role in landing a job
at a FAANG company.

This book is a pioneering effort to bring together E2E test automation and CI/CD,
two essential yet often disconnected aspects of modern software development,
offering a cohesive, practical perspective that will serve as a valuable resource for
software teams striving to elevate their software development practices. Courtney
did an excellent job of explaining the principles and practices mentioned above,
with easy-to-follow and hands-on exercises. Readers who complete these exer-
cises will gain a deeper understanding of real E2E Test Automation, Continuous
Testing and real CI/CD. I believe motivated software engineers and testing pro-
fessionals will find it highly valuable.

Zhimin Zhan

Brisbane, Australia

Preface

Why this book?

I began blogging on Medium in December 2021, mainly writing about end-to-end
(E2E) test automation, continuous testing, and programming, one article per week.
To date, I've published over 190 articles.

Admittedly, there were times when I struggled to come up with new ideas. One
day, my father suggested, “Why not write a series about how you approach E2E
test automation in a new project, and how you set up a continuous testing server
to run the suite frequentlly?” I replied, “That is quite straightforward” But he
reminded me, “Others might find it difficult. Think back to your internship, the
senior test automation engineer, the head of the testing excellence center at that
major telecom company, who promoted Playwright but couldn’t keep even a dozen
Playwright tests valid.”

That conversation inspired me to write a few articles on the topic, which ended up
being more popular than most of my previous posts. Along the way, I began to feel
that a book format might serve the material better. So, here it is.

This is the first book in a series, with each volume focusing on a different scripting
language or test automation framework:

* Volume 1 (this book): Selenium WebDriver with JUnit (Java)

* Volume 2: Selenium WebDriver with RSpec (Ruby)

* Volume 3: Playwright Test with TypeScript (JavaScript)

* Volume 4: Selenium WebDriver with Pytest (Python)

Preface A

Some readers may ask, “What about C#?”. I've previously authored an Apress book,
“Selenium Recipes in C#”. 1 am comfortable with both Java and C#, two of the
most-popular compiled languages. I've also built Continuous Testing pipelines
with small suites of automated tests in C#, and the process is very similar to
Java. In fact, readers who go through two or more books in this series will notice
that the practical E2E test automation and Continuous Testing workflows are
fundamentally alike, regardless of framework or language. Unless there is strong
demand, I believe the four books in this series are sufficient to demonstrate the
broad applicability of this approach.

You might also wonder: Does this approach apply to mobile test automation? The
answer is yes, absolutely. I'm currently working on a separate book titled “Practical
Mobile Test Automation”, which will cover that topic in depth.

What's unique about this book series?

1. Bridging E2E Test Automation and Continuous Testing

Typically, E2E test automation and Continuous Testing are treated as separate
topics, but I disagree. Often, capable test automation engineers can develop
high-quality automated E2E tests, yet without knowledge of Continuous
Testing (or access to the right tools), they struggle to maintain the suite,
leading it to eventually fail. Pity!

This book is a pioneering attempt to combine two closely related topics, E2E
test automation and Continuous Testing, into a single, cohesive guide.

2. Develop 20+ automated E2E tests for a real web app

Unlike many tutorial-style technical books that use oversimplified examples,
this book guides readers through developing real and practically useful test
scripts (which you can applly directly to work), against one real website.
Through each carefully chosen exercise, readers are guided to master essen-
tial automation scripting techniques.

Another important aspect is the size of the test suite. Only after a test suite
reaches a certain size, test automation engineers begin to appreciate the

Preface vi

importance of script maintenance, the benefits of maintainable test design
and refactoring, and the necessity of Continuous Testing.
3. Short, Focused Sessions to Master Test Automation Gradually

Each session is designed with a specific focus and typically takes 15-20
minutes to complete. Test automation concepts and best practices are in-
troduced gradually, with key knowledge points reinforced through repetition
in subsequent sessions.

4. Cover the top two leading web automation frameworks: Selenium Web-
Driver and Playwright

Test automation is a cornerstone of Agile development. In 2003, Watir
(Web Application Testing in Ruby) pioneered browser-based, end-to-end
(functional) testing. Since then, numerous web automation frameworks have
emerged and faded. Two decades later, Selenium WebDriver and Playwright
remain the dominant frameworks! in the field.

Choice of Web Automation Framework 2024

Selenium WebDriver BN 70%
Playwright 16%
Cypress Bl 11%
Others | 3%

Figure 1. Two independent surveys conducted in late 2023 yielded similar results

The solutions for all the exercises in this book series are in both Selenium Web-
Driver and Playwright, so readers can choose to learn either one or both.

Thttps:/ /agileway.substack.com /p /selenium-webdriver-is-still-the-best

https://agileway.substack.com/p/selenium-webdriver-is-still-the-best
https://agileway.substack.com/p/selenium-webdriver-is-still-the-best
https://agileway.substack.com/p/selenium-webdriver-is-still-the-best

Preface vii

Who should read this book?

Software professionals, from testers, programmers, software architects and agile
coaches, who want to learn hands-on web test automation, Continuous Testing
and real CI/CD.

Prior experience with test automation and programming is not necessary. Basic
scripting knowledge will help, but again, not necessary.

How to read this book?

[strongly recommend readers to do the exercises through chapters in order. The
solutions are provided on the book site?. If you get stuck, refer to those resources.

Send me feedback

I would like to hear from you. Comments, suggestions, errors in the book and
test/build scripts are all welcome. You can submit your feedback via the book
website.

Courtney Zhan

Brisbane, Australia

Zhttp:/ /courtneyzhan.com/books /ewta-selenium-junit

http://courtneyzhan.com/books/ewta-selenium-junit
http://courtneyzhan.com/books/ewta-selenium-junit

1: Introduction

Let’s begin with the goal.

1.1: Goal

The goal of this book is to help you set up and run a suite of Selenium WebDriver
tests in parallel on a continuous testing server — within a matter of hours. Some
readers might think this sounds a bit ambitious for beginners. But I believe every
end-to-end (E2E) test automation engineer should aim for this from the start. If
not, theyre not taking the craft seriously.

You might wonder: Is this just another guide promising quick results but falls apart
in real-world scenarios — something that looks good in a demo (for just a few simple
tests) but fails miserably at work (for a sizable suite of complex tests)? Absolutely
not.

My father has successfully used this exact setup and practices across many
applications—including two that run a 600+ test suite of E2E (UI) tests regularly.
I've also had my own share of successes using the same approach.

By the way, every software and tool presented in this book is free, in the software
sense.

‘ ‘ “Free software is a matter of liberty, not price” - GNU Home page'

Some might wonder, “what about the price then?”. Oh well, it is mostly free as well.
Simply put, money will not be the barrier that holds people back from mastering

Thttps:/ /www.gnu.org/home.en.html

https://www.gnu.org/home.en.html
https://www.gnu.org/home.en.html

Introduction 2

the E2E test automation knowledge in this book, but the lack of willingness to do
hands-on practice will.

1.2: A Story

A few years ago, when I started my internship at a large telecom company (assigned
to testing, with many other new IT interns), I set up continuous testing on my very
first day by running a few business automated E2E tests using Selenium WebDriver
with RSpec. My team leader was deeply impressed to see real E2E test automation
running and regularly detecting regression defects, for the first time. For me, it felt
completely natural-1 had been watching my father do this daily for over a decade,
and this was exactly how he had always trained me: “End-to-end test automation
must be visible and useful, from day 1, and every day onwards”. Later, a senior test
automation engineer from the Sydney office, watched my video presentation to
the entire division (recommended by my team leader and supported by the division
director) and asked me to switch to Playwright.

By the next day, I had over 20 Playwright tests running on the BuildWise CT server.
Later, I learned that this same senior engineer, the head of the “Test Excellence
Center”, had struggled to keep even a dozen of his own Playwright tests running.
He only did individual test automation demos in presentations, with no regular
suite executions and no one requesting test execution statistics. His fake test
automation went unnoticed—until I, a young intern, arrived. People, at least my
team members, had witnessed effective web test automation in action.

1.3: E2E Test Automation and Continuous Testing:
Universal Skills for Rapid Results

Readers of my other books and blog articles know that I've worked on test
automation across multiple frameworks and languages. The key points are:

¢ End-to-End Test Automation is a transferable skill

Introduction 3

In other words, the principles and best practices apply regardless of the
framework or programming language.

Continuous Testing works similarly across frameworks and languages

The setup and practices remain largely the same. For example, on my father’s
Continuous Testing server (running since 2012), there are projects using over
10 different combinations of automation frameworks, syntax frameworks,
and programming languages, including: Selenium RSpec (Ruby), Selenium
Pytest (Python), Selenium JUnit (Java), Selenium MSTest (C#), Selenium
Cucumber (Ruby), Playwright Test (TypeScript), Appium RSpec (Ruby) and
even performance and load testing projects, all within the same CT server
instance.

Rapid results are possible

With the right approach, you can achieve a sizeable End-to-End Test Automa-
tion suite and Continuous Testing solution in days, not weeks or months.

1.4: Book Structure

This book is designed for beginners and takes a hands-on approach. The fastest
way to master end-to-end test automation is through practical experience, which
is exactly what this book provides.

You'll learn to:

Set up your test development and execution environment.
Write your first test script.
Organize your test project and leverage productivity tools.

Develop additional test scripts with various script development and debug-
ging techniques.

Against a real webapp.

Introduction 4

* Refactor tests into a maintainable form.
Go beyond “just working” by applying solid design principles and best practices.

Unmaintainable automated tests are useless.

» Expand your suite to around 22 test cases while learning more automated
testing skills.
* Run the complete test suite.

With just a 22-test E2E suite, you'll quickly experience the two main challenges
of running good-quality test scripts through tools or the command line: long
feedback loop and execution reliability. You need a Continuous Testing server.

» Execute the whole suite on a Continuous Testing (CT) server.

* Scale up with parallel execution on the CT server, with multiple build agents.

Quicker feedback and more reliable test execution.

By the end of this book, you'll have the skills, knowledge, tools, and confidence to
build a sizeable test suite at work—and run it daily on a continuous testing server.

2: Set up Selenium WebDriver

In this book, we'll use Selenium WebDriver’s Java bindings to build automated test

scripts for web applications.

A few software tools need to be installed, but setup is straightforward, some may
already be on your computer:

* Java
* Testing Libraries (Selenium WebDriver and JUnit)
* Google Chrome Browser and its matching driver

* (Optional but recommended) A Java IDE such as Intellij IDEA

2.1: Installation

Web test automation is platform-independent, and so are Selenium WebDriver and
Java. The same software, scripts, and practices apply across all operating systems,
with only minor setup differences (such as file path conventions). In this book, we'll
use macOS as the primary platform.

All the automated test scripts in this book were developed and executed on a
Continuous Testing Server running on a $599 M4 Mac Mini.

Set up Selenium WebDriver 6

2.1.1: Install Java

Java has been one of the most widely used programming languages for over two
decades, primarily for building web applications. It is also a can by used writing
end-to-end (E2E) automated tests.

When installing Java, you'll find two options: the JDK (Java Development Kit) and
the JRE (Java Runtime Environment). The JDK includes everything needed to both
compile and run Java programs, while the JRE only allows you to run them. For
development work, whether building applications or writing test scripts, ensure
that the JDK is installed.

I recommend installing an LTS version of Java, so I'll be installing Java 21, but you
can use whichever version you prefer.

2.1.1.1: macOS

To install Java for macOS, visit the Java downloads page!, click the macos tab,
then “ARM64 DMG Installer” to download. Open the downloaded file and run the
installer.

To verify installation, run java -version in a terminal.

$ java -version

java version "21.0.7" 2025-04-15 LTS

Java(TM) SE Runtime Environment (build 21.0.7+8-LTS-245)

Java HotSpot(TM) 64-Bit Server VM (build 21.0.7+8-LTS-245, mixed mode, sharing)

2.1.1.2: Windows

To install Java for Windows, visit the Java downloads page? to download and run
the EXE installer file.

Thttps:/ /www.oracle.com/au/java/technologies /downloads /#java2l
Zhttps:/ /www.oracle.com /au/java /technologies /downloads /#jdk21-windows

https://www.oracle.com/au/java/technologies/downloads/#java21
https://www.oracle.com/au/java/technologies/downloads/#jdk21-windows
https://www.oracle.com/au/java/technologies/downloads/#java21
https://www.oracle.com/au/java/technologies/downloads/#jdk21-windows

Set up Selenium WebDriver 7

2.1.1.3: Linux

Install Java with the appropriate binary/installer for your Linux distribution from
the Java downloads page®.

2.1.2: Download and Organize Testing Libraries

Install the test libraries (known as ‘JARS’ (Java ARchives) in Java).

The test libraries you will need are:

* Selenium WebDriver (automation framework); and

* JUnit (test syntax framework)

Download the latest stable Selenium WebDriver release from the Selenium Down-
load page*. This will be a zip file containing, multiple jars, unzip it and move it to a
central location (e.g. /Users/me/java-lib-selenium-webdriver).

JUnit currently has two main versions in use: JUnit 4 and JUnit 5. While JUnit
5 is the newer release and introduces significant changes, I prefer JUnit 4 for its
simplicity and ease of setup. For end-to-end test automation, JUnit 4 is sufficient.

To install JUnit 4, download two JARs, junit.jar and hamcrest-core.jar from the
downloads page®. Again, move these to the same repository as the Selenium JARs.

2.1.3: Browser and Driver

While Selenium works for all major browsers, this book will focus on the most
dominant browser - Google Chrome. If you already have Google Chrome installed,
you're ready to start.

3https://www.oracle.com/au/java/technologies /downloads /#jdk21-linux
4https:/ /www.selenium.dev /downloads /
Shttps:/ /github.com /junit-team /junit4 /wiki/Download-and-Install

https://www.oracle.com/au/java/technologies/downloads/#jdk21-linux
https://www.selenium.dev/downloads/
https://www.selenium.dev/downloads/
https://github.com/junit-team/junit4/wiki/Download-and-Install
https://github.com/junit-team/junit4/wiki/Download-and-Install
https://www.oracle.com/au/java/technologies/downloads/#jdk21-linux
https://www.selenium.dev/downloads/
https://github.com/junit-team/junit4/wiki/Download-and-Install

Set up Selenium WebDriver 8

Web browsers, such as Google Chrome, require a separate component—called a
driver—to enable automation with tools like Selenium. For Chrome, this com-
ponent is ChromeDriver, and its version typically needs to match your installed
Chrome browser closely (within one version). Previously, this meant manually
updating ChromeDriver every time Chrome updated, which happens roughly every
two months.

Starting with Selenium v4.11 and Chrome v115, manual management of
ChromeDriver is no longer necessary. Selenium Manager now handles it
automatically, making setup and maintenance much simpler.

Manually installing ChromeDriver

Here’s a quick guide to manually install a specific version of ChromeDriver (for
older Chromebrowser versions), in three simple steps:

1. Download the ChromeDriver zip file from the Chrome for Testing avail-
ability site®. Make sure to select the version that matches your Chrome
browser and OS.

2. Unzip the file to extract the chromedriver executable.

3. Place the chromedriver executable in a directory that’s included in your
system’s PATH.

2.1.4: Install Apache Ant

Apache Ant is a Java-based build tool used to automate tasks, which we could use
run Selenium tests with flexibility.

Some older versions of macOS come with Ant pre-installed (you can verify this by
running ant -version). If it is not there, you can install Ant va Homebrew:

6https:/ /googlechromelabs.github.io /chrome-for-testing /

https://googlechromelabs.github.io/chrome-for-testing/
https://googlechromelabs.github.io/chrome-for-testing/
https://googlechromelabs.github.io/chrome-for-testing/

Set up Selenium WebDriver 9

brew install ant

For Windows and Linux users, follow the official Ant installation guide’.

2.2: Run a sample automation script

No setup is complete without verification—that’s the tester’s mindset. Let’s run a
Selenium WebDriver script.

Create a new text file (in any text editor) and name it ‘sample.java.

Inside sample.java, paste or type in the following contents:

package com.sample;

import org.openga.selenium.WebDriver;
import org.openga.selenium.chrome.ChromeDriver;

public class Sample {
public static void main(String[] args) throws InterruptedException {
WebDriver driver = new ChromeDriver();

// And now use this to visit Google
driver.get("http://www.google.com");

// Check the title of the page
System.out.println("Page title is: " + driver.getTitle());

Thread.sleep(5000);
driver.quit();

Then, in a terminal window, navigate to the folder where Sample.java is, and run
the command:

https:/ /ant.apache.org/manual /install.html

https://ant.apache.org/manual/install.html
https://ant.apache.org/manual/install.html

Set up Selenium WebDriver 10

% javac -d target -classpath "target:/Users/me/java-lib-selenium-webdriver/seleni\
um-java-4.34.0/*" Sample.java

This command compiles the Sample.java and outputs the compiled classes into a
folder named target. The classpath flag specifies the classpath, which should be
the directory where you saved the Selenium Java testing libraries.

You should now see a folder named target containing the compiled file com/sam-
ple/Sample.class. With the Java file compiled, you can run it using the following
command (from the same directory where you ran the compile command):

% java -classpath 'target:/Users/me/java-lib-selenium-webdriver/selenium-java-4.3\
4.0/x" com.sample.Sample

A Chrome browser window should launch, navigate to the Google homepage, and
then close automatically. The console output will look like this:

courtney@Courtneys-Mac-mini ch@2-sample-test % javac -d target -classpath "target:/Users/Shared/java-lib-selenium
-webdriver/selenium-java-4.34.0/*" Sample.java

courtney@Courtneys-Mac-mini ch@2-sample-test % java -classpath 'target:/Users/Shared/java-lib-selenium-webdriver/
selenium-java-4.34.0/*' com.sample.Sample

Aug 12, 2025 8:57:29 PM org.openqa.selenium.devtools.CdpVersionFinder findNearestMatch
WARNING: Unable to find CDP implementation matching 139

Aug 12, 2025 8:57:29 PM org.openqa.selenium.chromium.ChromiumDriver lambdanew4

WARNING: Unable to find version of CDP to use for 139.0.7258.67. You may need to include a dependency on a specif
ic version of the CDP using something similar to “org.seleniumhqg.selenium:selenium-devtools-v86:4.34.0° where the
version ("v86") matches the version of the chromium-based browser you're using and the version number of the art
ifact is the same as Selenium's.

Page title is: Google
courtney@Courtneys-Mac-mini ch@2-sample-test % I

Congratulations, you've just executed your first automation script!

2.3: Run a sample automated test script

We've just run an automation script that interacts with a browser. Now, let’s take it
a step further by converting it into a JUnit test. Automated tests not only perform

Set up Selenium WebDriver 1

actions but also include assertions to verify results. JUnit is a widely used Java
testing framework that provides both the structure for writing tests and built-in
assertion methods.

The following is an example JUnit test script that opens the Google homepage and
checks that the page title is correct.

import org.junit.After;

import org.junit.Before;

import org.junit.Test;

import org.openqa.selenium.WebDriver;

import org.openqa.selenium.chrome.ChromeDriver;

import static org.junit.Assert.assertEquals;

public class SampleTest {
WebDriver driver = new ChromeDriver();

@Before
public void setUp() throws Exception {
driver.get("http://www.google.com");

@Test

public void testCanLoadGoogle() throws Exception {
System.out.println(""Page title is: " + driver.getTitle());
assertEquals("Google", driver.getTitle());

@After
public void tearDown() throws Exception {
driver.quit();

}

Save the script above to a file named SampleTest. java.

Similar to the sample script, we need to compile the test file first. In the classpath,
keep the Selenium libraries, but also add the JUnit dependency (junit.jar):

Set up Selenium WebDriver 12

% javac -d target -classpath 'target:/Users/Shared/java-lib-selenium-webdriver/se\
lenium-java-4.34.0/x:/Users/Shared/java-lib-selenium-webdriver/junit4/junit-4.13.\
2.jar' SampleTest.java

To run the file, we don’t want to use the regular Java runner, instead, use the JUnit
runner by using org.junit.runner.JUnitCore before you specify the class to be
run. This will run the test and return the test result. The runner is in the Hamcrest
dependency (hamcrest-core.jar), soremember to add that to the classpath as well.

% java -classpath 'target:/Users/Shared/java-lib-selenium-webdriver/selenium-java\
-4.34.0/*:/Users/Shared/java-lib-selenium-webdriver/junit4/junit-4.13.2.jar:/User\
s/Shared/java-lib-selenium-webdriver/selenium-dependent/hamcrest-core-1.3.jar' or\
g.junit.runner.JUnitCore SampleTest

A Chrome browser window should launch, navigate to the Google homepage, and
then close automatically. The console output will look like this:

JUnit version 4.13.2
Page title 1is: Google
Time: 2.407

OK (1 test)

The “OK (1 test)” in the JUnit console output means that 1 test was run and the
result was successful. If it had failed, you would have seen a line like “FAILURES! !!

Tests run: 1, Failures: 1"

At this stage, all the necessary tools are installed, and their setup has been verified
using the two scripts above. In Chapters 4 and 7, I will show how to run tests more
easily (replacing the manually crated javac and java commands) using an IDE and
Ant, respectively.

3: Run your first Selenium WebDriver
Test

In the previous chapter, we successfully ran a simple Selenium JUnit test to confirm
that our setup was working correctly. Now, let’s dive into the fundamentals of
Selenium WebDriver and JUnit syntax, and then move on to developing a more
realistic (and useful) test case.

3.1: Selenium JUnit Test Structure

Let’s start by learning from the sample test script from before - SampleTest.java.

Explanation of the file name:

* Testindicates it’s a test file — it is a test script to verify a business behaviour

* .java means it is a Java file.

The contents of SampleTest.java:

Run your first Selenium WebDriver Test 14

import
import
import
import
import

import

public

org.junit.After;

org.junit.Before;

org.junit.Test;
org.openqa.selenium.WebDriver;
org.openga.selenium.chrome.ChromeDriver;

static org.junit.Assert.assertEquals;

class SampleTest {

WebDriver driver = new ChromeDriver();

@BeforeClass
public static void beforeAll() throws Exception {

}

@Before
public void setUp() throws Exception {
driver.get("http://www.google.com");

@Test

public void testCanLoadGoogle() throws Exception {

System.out.println('"Page title is: " + driver.getTitle());
assertEquals("Google'", driver.getTitle());

@After
public void tearDown() throws Exception {
driver.quit();

@AfterClass
public static void afterAll() throws Exception {

}

The first few lines, starting with import, load in Selenium WebDriver (the automa-
tion framework) and JUnit (the test syntax framework). These (and any other

libraries you use in your test scripts) are always required at the beginning of any

Selenium JUnit test script. To keep the scripts concise, I'll leave them out in later
example scripts.

@Test, @BeforeClass, @Before, @After and @AfterClass are JUnit structure lines that

Run your first Selenium WebDriver Test 15

form the test structure. If you're familiar with xUnit-style frameworks, this should
feel familiar. For now, just remember that the eTest block defines a single JUnit
test case. I'll go into more detail about JUnit in a later chapter.

Putting the JUnit test structure aside, we're left with four core test steps:

WebDriver driver = new ChromeDriver();
driver.get("http://www.google.com");
assertEquals("Google", driver.getTitle());
driver.quit();

Meaning:
1. Launch a Chrome browser
2. Navigate to the Google homepage
3. Check that the page title is ‘Google’
4. Close the browser

These four steps mirror what you would do in a manual test, right?

My book “Web Test Automation in Action: Volume 1” includes a set of Selenium
and Playwright tests for a sample test site: Agile Travel (travel.agileway.net). In
this book, we will develop dozens of tests against a real webapp: WhenWise
(whenwise.agileway.net).

3.2: First Test: User Login
The first automated test case for web apps is almost always user login, so let’s start

there. Test data:

» Site URL: https: //whenwise.agileway.net

(a sandbox site)

* User Login: driving@biz.com; Password: testol

(a list of test users are shown on the sandbox site)

Run your first Selenium WebDriver Test 16

3.3: Rename the test script file and add the first step

I recommend using a more meaningful test script file name, i.e, rename Sam-
pleTest.java to LoginClientOkTest.java. Remember to update the class name to
match.

We're also going to update the script so that it visits the target website
(‘https: //whenwise.agileway.net’) instead of the Google home page in the @Before
block. Also, to keep our test passing, update the website title we expect to be
‘WhenWise - Booking Made Easy.

public class LoginClientOkTest {
WebDriver driver = new ChromeDriver();

@BeforeClass
public static void beforeAll() throws Exception {
}

@Before
public void before() throws Exception {
driver.get("https://whenwise.agileway.net");

}

@Test

public void testLoginOk() throws Exception {
System.out.println('"Page title is: " + driver.getTitle());

assertEquals("WhenWise - Booking Made Easy'", driver.getTitle());
}

@After
public void tearDown() throws Exception {
driver.quit();

}
@AfterClass

public static void afterAll() throws Exception {
}

To perform the above, no Selenium or Java knowledge is required. Really, just a

Run your first Selenium WebDriver Test 17

simple string replacement.

Run it.

% javac -d target -classpath 'target:/Users/me/java-lib-selenium-webdriver/seleni\
um-java-4.34.0/*:/Users/me/java-lib-selenium-webdriver/junit4/junit-4.13.2.jar' L\
oginClientOkTest.java

% java -classpath 'target:/Users/me/java-lib-selenium-webdriver/selenium-java-4.3\
4.0/*:/Users/me/java-lib-selenium-webdriver/junit4/junit-4.13.2.jar:/Users/me/jav\

a-lib-selenium-webdriver/selenium-dependent/hamcrest-core-1.3.jar' org.junit.runn\
er.JUnitCore LoginClientOkTest

You'll see a Chrome browser launch and navigate to the WhenWise sandbox site,
but it will close very quickly (maybe even before the page content loads).

To keep the browser open for three seconds so you can actually see something,
add the following line (to pause the execution for three seconds) to the end of the
test (eTest block):

Thread.sleep(3000);

Run the test again, you should be able to see the WhenWise home page content
load.

3.4: Add more user login steps and finish the login test
case complete

Let’s develop this login test script. First, we should create a test design by doing
the test manually and noting down the steps:

1. Open ‘https: //whenwise.agileway.net’ in a browser.

2. Click the ‘Sign in’ button.

Run your first Selenium WebDriver Test

18

3. Enter a valid user name or email.
4. Enter the correct password.
5. Click the “SIGN IN” button.

6. Verify signed in successfully.

The first step (opening the website) is already completed in the above script. Next,
we will work out the remaining steps in Selenium WebDriver.

3.4.1: Selenium WebDriver’s intuitive syntax pattern

Selenium WebDriver is the easiest-to-learn automation framework because its
syntax follows such a simple and intuitive pattern.

One simple pattern: locate a web control and drive it

Step 1. Find a control (element) Step 2. Act on it
by one of 8 locators

Register | Login Register | Login
Agile Travel Agile Travel

User Name: agilewa; User Name: agilewa,
—

Password: testwise Password: testwise

Remember me Remember me
Signin Signin

Run your first Selenium WebDriver Test 19

3.4.2: Working out Selenium Step 1: Locate the control

I don't use record-n-playback utility. I prefer to manually inspect the element (or
control) in the browser, and come up with the best locator, then type the test step
in the testing IDE.

With a good testing IDE, such as TestWise or a customised IntelliJ, manually
entering test steps can be quite efficient (with auto complete and snippets, see in
Chapter 5). The real importance here is the recorded test steps are usually brittle
and not good quality, it might work but is unmaintainable over time.

Let me illustrate with the Step 2 of the test: “Click the ‘Sign in’ button”.

In Chrome (manually), right-click the ‘Sign in’ button on the WhenWise home page
and select the ‘Inspect’ option.

< > C 25 whenwise.agileway.net bg COae} .
Wise i i< [o Elements Console >> AsB1 & i X
<T—— only rmembers on certaln page ——>

v<li id="sign-in-list-item"> .
<a href="/sign-in?locale=en—-AU" class:T.n—b
s4 fade-button" style="color: black; font-si
ze: 1rem; border:1px solid #E@EOE®@; backgro
und-color: rgb(250, 250, 250);">Sign in
 == $0

</1li> I

Figure 2. Right-click to inspect a control in Chrome

li#sign-in-list-item 66.59x 56

Discover quality services near you.

Business Location

In Chrome’s Inspect pane, look for the HTML fragment of the control you are
interested in.

Sign in

It turns out that despite looking like a button, the ‘Sign in’ control is actually a
hyperlink.

Run your first Selenium WebDriver Test

20

In Selenium, ‘locating the control’ means finding the element using a locator. For
this ‘Sign in’ hyperlink, the optimal locator is linkText:

driver.findElement(By.linkText("Sign in"));

linkText is one of the eight core locators in Selenium WebDriver:

Locator Example

ID findElement (By.id("user"))

Name findElement(By.name("username"))

Link Text findElement (By.linkText("Login"))

Partial Link Text findElement (By.partialLinkText ("Next")

XPath findElement (By.xpath("//div[@id="1login"]/input"))

Tag Name findElement (By.tagName ("body")

Class Name findElement (By.className("table")

CSS findElement (By.cssSelector ("#login > input[type="text"]")

You may use any one of them to locate the control you are looking for.

3.4.3: Work out Selenium Step 2: Perform action on the located control

Once a control is located in Selenium, we append the operation we want to
perform. In this case, since it’s a hyperlink, the operation is ‘. click()"

driver.findElement(By.linkText("Sign in")).click();

Quite simple, right?

Some readers might wonder, ‘What about entering text?” The next step, entering
an email on the login page, demonstrates this.

Run your first Selenium WebDriver Test 21

<input id="email" type="text" name="session[email]" class="active'">

We begin by locating the element. There are two suitable locator options: -id:
email Or name: session[email]. Either option is acceptable.

driver.findElement(By.name("session[email]"));

For a text box, the primary operation is to input text. In Selenium, this is done
using ‘. sendKeys(...)"

driver.findElement(By.name("session[email]")).sendKeys("james@client.com");

With the above knowledge, you shall be able to work out the Selenium statements
up to Step 5.

One other kind of action you can take on a locator is reading the element text, you
can do this with .getText().

driver.findElement(By.id("username')).getText();

Commonly, you might want to get all the text on the page, which is useful for
verification steps. One easy way to do this is to get all the text on the HTML page.
You can easily do this via the HTML ‘body’ tag.

driver.findElement(By.tagName("body")).getText();

3.5: Run your test

By now, you should have a test script that goes all the way to clicking the sign in
button (Step 5). We will verify the sign-in was successful (Step 6) a little bit later.
Give your test script a run with the javac and java commands to see if the sign in
steps worked.

Run your first Selenium WebDriver Test 22

% javac -d target -classpath 'target:/Users/me/java-lib-selenium-webdriver/seleni\
um-java-4.34.0/*:/Users/me/java-lib-selenium-webdriver/junit4/junit-4.13.2.jar" L\
oginClientOkTest.java

% java -classpath 'target:/Users/me/java-lib-selenium-webdriver/selenium-java-4.3\
4.0/*:/Users/me/java-lib-selenium-webdriver/junit4/junit-4.13.2.jar:/Users/me/jav\
a-lib-selenium-webdriver/selenium-dependent/hamcrest-core-1.3.jar' org.junit.runn\
er.JUnitCore LoginClientOkTest

Hopefully you should see a browser open, enter login details then successfully
login! Feel free to add a pause at the end if it went by too fast to see the successful
login screen (Thread.sleep(500) ;).

3.5.1: Common Errors

Before we go further, let’s discuss a common error message you might encounter.
Here is the initial draft test script I created.

@Test

public void testLoginOk() throws Exception {
driver.findElement(By.linkText("Sign in")).click();
driver.findElement(By.id("username")).sendKeys("james@client.com");
driver.findElement(By.id("password")).sendKeys("test01");
driver.findElement(By.id("login-btn")).click();

If you run it with java, you will see the following error:

Run your first Selenium WebDriver Test 23

There was 1 failure:
1) testLoginOk(LoginClientOkTest)
org.openga.selenium.NoSuchElementException: no such element: Unable to locate ele)\
ment: {"method":"css selector","selector":"#username"}
(Session 1info: chrome=139.0.7258.139)

For documentation on this error, please visit: https://www.selenium.dev/documenta\
tion/webdriver/troubleshooting/errors#no-such-element-exception

Build info: version: '4.34.0', revision: '2a4c61c498'

System info: os.name: 'Mac 0S X', os.arch: 'aarch64', os.version: '15.6.1', java.\
version: '21.0.7'

Driver info: org.openga.selenium.chrome.ChromeDriver
Command: [81c26fbda44557d213cb543aae37b207, findElement {value=username, using=id\
}
Capabilities {acceptInsecureCerts: false, browserName: chrome, browserVersion: 13\
9.0.7258.139, ...}
Session ID: 81lc26fbda44557d213cb543aae37b207

at java.base/jdk.internal.reflect.DirectConstructorHandleAccessor.newInstance(Di\
rectConstructorHandleAccessor.java:62)

at org.openga.selenium.remote.RemoteWebDriver.execute(RemoteWebDriver.java:544)
at org.openga.selenium.remote.ElementLocation$ElementFinder$2. findElement (Elemen)
tLocation.java:165)

at org.openga.selenium.remote.RemoteWebDriver.findElement (RemoteWebDriver.java:3\
61)
at LoginClientOkTest.testLoginOk(LoginClientOkTest.java:21)

The above error message is a NoSuchElementException, for line 21 of the Login-
ClientOkTest file (bottom of the stack trace).

This script is intentionally set up to fail-1 had used the wrong ID for the email field.
The ID should be emai1, not username.

Why am I showing you this failing test? It's common for beginners to make typos,
which can lead to execution failures like the one above. When you see this error,
go back to the script and check the locator that failed is spelt correctly or using
the correct locator type.

Run your first Selenium WebDriver Test 24

3.6: Add Verification

Tests require verification (or assertion) to be useful, otherwise it just drives the
browser without checking for intended behaviour.

A typical JUnit assertion is in the format ‘assertTrue(...)’ or ‘assertFalse(...)’
or ‘assertEquals(..., ...). For example ‘assertEquals(5, 2 + 3);, which is an
exact match.

In addition to checking for exact matches, you can also verify substring contain-
ment using contains. For example, assertTrue("scare".contains("care"));.

Now, back to the login test, the final step (Step 6) is to verify the sign in was
successful.

If you try the test steps manually, you will see that after you sign in, there will be
an alert that says “You have signed in successfully’.

So the verification step in this test would look like:

assertTrue(driver.findElement(By.tagName("body")).getText().contains("You have si\
gned in successfully"));

This verifies that the text is shown anywhere on the page contents (under the
HTML tag ‘body).

3.7: Add a user login failed test case in a separate test script

We should now have a successful login test scenario. Usually, we need at least
verify the user login failed test scenario as well.

Create another file: LoginClientFailedTest.java with the below contents:

Run your first Selenium WebDriver Test 25

import
import
import
import
import
import

import

public

org.junit.After;

org.junit.Before;

org.junit.Test;

org.openqa.selenium.By;
org.openga.selenium.WebDriver;
org.openga.selenium.chrome.ChromeDriver;

static org.junit.Assert.assertTrue;

class LoginClientFailedTest {

WebDriver driver = new ChromeDriver();

@Before
public void setUp() throws Exception {
driver.get("https://whenwise.agileway.net");

@Test

public void testLoginFailed() throws Exception {
driver.findElement(By.linkText("Sign in")).click();
driver.findElement(By.name("session[email]")).sendKeys("james@client.com");
driver.findElement(By.id("password'")).sendKeys("badpass");
driver.findElement(By.id("login-btn")).click();

Thread.sleep(500);
assertTrue(driver.findElement(By.tagName("body")).getText().contains(

"Password/email is dinvalid"));

@After
public void tearDown() throws Exception {
driver.quit();

Run this test script.

Note: The only changes here from the “Login Ok” test were the password (“bad-

pass” to make it incorrect), and the verification (invalid password message instead
of the login success message).

Run your first Selenium WebDriver Test 26

3.8: Refactoring: Merge two user login test cases into one
test script file

In the above, we defined two test cases in two separate files. In this case, it is
actually better to merge into one, because they are related; theyre both login tests.
Furthermore, we might be able to reuse some test steps in @BeforeClass, @Before
, @After, and @AfterClass blocks.

Create a new LoginClientTest.java file including the two previous test cases. It is
not a simple concat, rather, a merge to put them into a test syntax structure.

public class LoginClientTest {
static WebDriver driver = new ChromeDriver();

@BeforeClass
public static void beforeAll() throws Exception {
driver.get("https://whenwise.agileway.net");

@Before
public void before() throws Exception {

}

@Test

public void testLoginOk() throws Exception {
driver.findElement(By.linkText("Sign in")).click();
driver.findElement(By.name("session[email]")).sendKeys("james@client.com");
driver.findElement(By.id("password")).sendKeys("test0l");
driver.findElement(By.id("login-btn")).click();

Thread.sleep(500);
assertTrue(driver.findElement(By.tagName("body")).getText().contains(
"You have signed in successfully"));

@Test

public void testLoginFailed() throws Exception {
driver.findElement(By.linkText("Sign in")).click();
driver.findElement(By.name("session[email]")).sendKeys("james@client.com");
driver.findElement(By.id("password")).sendKeys("badpass");

Run your first Selenium WebDriver Test 27

driver.findElement(By.id("login-btn")).click();
Thread.sleep(500);

assertTrue(driver.findElement(By.tagName("body")).getText().contains(
"Password/email is invalid"));

@After
public void after() throws Exception {

}

@AfterClass
public static void afterAll() throws Exception {
driver.quit();

}

3.9: Run the test script

For the test script above (which includes two test cases), try running it in the
following ways:

1. Run only testLoginOk test case. (Comment out the testLoginFailed test)

2. Run only testLoginFailed test case. (Comment out the testLoginOk test)

3. Run the entire test script with both test cases.
You'll likely observe:

1. testLoginOk passes.
2. testLoginFailed passes.

3. When running both together, testLoginOk passes but testLoginFailed fails.

Run your first Selenium WebDriver Test 28

Why does the second test fail only when both are executed together? Clearly, the
execution of the first test case is affecting the outcome of the second. In test
automation, this issue is known as “inter-test dependency within the test script”

What'’s causing this behavior? Try running the entire test script several times and
watch the browser closely as it executes.

Here’s the issue: both test cases assume that the browser session in a logged-out
state. When run individually, that assumption holds. But when run together, the
first test logs in successfully — leaving the session authenticated. The second test
then tries to log in again, which causes it to fail.

The solution is simple: log out at the end of the first test case. Specifically, at the
end of testLoginOk, add the following statement:

driver.get("https://whenwise.agileway.net/sign-out");

Run the entire test script again with java — both test cases should now pass. Then,
run each test individually to confirm they still work independently.

Just as we saw with the case where each test passed on its own but failed when
run together, the opposite scenario is also common: the full test script passes, but
certain individual tests in it fail. This usually happens when tests are written with
intentional dependencies — for example, “Test 1: create a client” followed by “Test 2:
edit that client”. While convenient, this approach makes debugging more difficult
and should be avoided.

The goal of this exercise is to recognize both execution modes and ensure that
every test case can pass both individually and as part of the full script.

References 73

About the Cover Photo

Featured on the cover is the Hiroshima Castle (Japan), photographed by Zhimin
Zhan in May 2025.

Book Cover Designed by the author.

	Table of Contents
	Foreword
	Preface
	Why this book?
	What's unique about this book series?
	Who should read this book?
	How to read this book?
	Send me feedback

	1: Introduction
	1.1: Goal
	1.2: A Story
	1.3: E2E Test Automation and Continuous Testing: Universal Skills for Rapid Results
	1.4: Book Structure

	2: Set up Selenium WebDriver
	2.1: Installation
	2.2: Run a sample automation script
	2.3: Run a sample automated test script

	3: Run your first Selenium WebDriver Test
	3.1: Selenium JUnit Test Structure
	3.2: First Test: User Login
	3.3: Rename the test script file and add the first step
	3.4: Add more user login steps and finish the login test case complete
	3.5: Run your test
	3.6: Add Verification
	3.7: Add a user login failed test case in a separate test script
	3.8: Refactoring: Merge two user login test cases into one test script file
	3.9: Run the test script

	4: Project Structure & Tools
	4.1: Test Project Structure
	4.2: Setting up IntelliJ IDEA
	4.3: Run Entire Test Script in IntelliJ IDEA
	4.4: Run Individual Test Case in IntelliJ IDEA
	4.5: Benefits of using an IDE

	5: Gain Productivity
	5.1: Tools in the selenium suite
	5.2: Some beginner-friendly features in Intellij IDEA

	6: Design with Maintenance in mind
	6.1: Create a new test script in IntelliJ
	6.2: Extract to Function Refactoring: Login
	6.3: Functional test refactoring rhythm
	6.4: Move login function to TestHelper
	6.5: Use the TestHelper's login in other test scripts
	6.6: Introduce AbstractTest
	6.7: Wrap up

	7: More Tests
	7.1: 3.4 ``Remember Me'' sign in
	7.2: 4.5 A business user cannot access other businesses' resources
	7.3: 4.6 Business user shall not be able to view or edit user details
	7.4: 5.7, 5.8 Create client
	7.5: 5.9, 5.10 Search client
	7.6: 6.11 Create a group lesson on calendar
	7.7: 6.12 Create recurring group lessons on calendar
	7.8: Run the whole suite with Ant

	8: Refactoring to Page Object Model
	8.1: Page Object Model
	8.2: Maintainable Test Design: Test Helper and POM
	8.3: Refactoring POM with Tool Support
	8.4: Case Study: Extract to Page Function
	8.5: Case Study: Introduce Page Object
	8.6: Case Study: Rename
	8.7: Summary

	9: More Tests Again
	9.1: 8.13 Register user books a group lesson
	9.2: 8.14 Client can cancel class booking under `my bookings'
	9.3: 9.15 A registered user can make an one-on-one booking
	9.4: 9.16 A registered user can cancel a recent booking
	9.5: 10.17 Wizard to set up a new business
	9.6: 11.18 Business user set business hours for individual physical resource
	9.7: 12.19 Business can enable and disable client management
	9.8: 13.20 Scan QR to register/cancel group lesson (last 4 phone digits)
	9.9: 14.21 Responsive UI
	9.10: 15.22 API Testing: Referral Get Payment Records
	9.11: Wrap up

	10: Set up Continuous Execution
	10.1: Selenium Official Continuous Execution Options
	10.2: Install BuildWise Server
	10.3: Git Repository Setup
	10.4: Test Execution Environment Setup
	10.5: Set up a BuildWise Project
	10.6: Test Execution in BuildWise

	11: Sequential Execution in BuildWise
	11.1: First Three runs
	11.2: Fix the build
	11.3: Getting the first green run
	11.4: CT Role in help stabilizing and debugging test failures
	11.5: Test execution history
	11.6: Custom test exectuion
	11.7: Quick navigation to the failed test line
	11.8: View screenshot
	11.9: Toggle headless mode
	11.10: Custom target server URL
	11.11: Two BuildWise Features Unavailable to Test Scripts in Java
	11.12: Wrap up

	12: Parallel Execution in BuildWise
	12.1: Run BuildWise in production mode
	12.2: Build Agent Machines
	12.3: How parallel build works in BuildWise?
	12.4: Create a Parallel Build Project
	12.5: First Parallel Run
	12.6: Multi-Agents against the Single Server
	12.7: Remove test execution dependencies among test scripts
	12.8: Multi-Agents against the Multi-Servers
	12.9: Some great BuildWise CT features for parallel test execution
	12.10: Wrap up

	13: Effective Web Test Automation
	13.1: Implied meanings of ``Effective''
	13.2: Many End-to-End Test Automation efforts fail eue to ineffectiveness
	13.3: How this book's approach addresses the challenges

	Afterword
	Practice makes perfect
	Apply your newly learned E2E Test Automation and CT at work
	Learn and grow

	Resources
	Books
	Tools
	Blog

	References

